Agenda

Settle 1n

SPV overview

Setting up a project

First steps — driving signals

Using the debugger

More driving (and collecting) signals
SpvBitVec and friends

Agenda (cont)

Generation
Coverage
Project Exercise
Optional

Summary

What 1s SPV Test Bench Studio?

e Verification library

— Simulation interaction (connectivity)
* Write/Read signals
e React to simulation events (processes)

— Generation

— Coverage

— Basic helper classes (bit vector and friends)
— Companion libraries

 Simulator Add-on (PLI, FLI, VHPI, etc.)
e Stand-alone SPVSim (Modeling)

What 1s SPV? (cont)

e Cross platform
— Widows
— Linux
— Others

e Compilers
— VS 6 (Windows) (now adding support for later VS)

— GCC 2.96 (Linux/Unix)
— GCC 3.2 and higher

e Linux/Unix
e Windows (MinGW)

Setting Up

Requirements:
v’ Simulator (e.g. Active HDL)
v Visual Studio 6 with SP 6
v SPV Test Bench Studio

SPV AppWizard — Step 1

*«.. Microsoft Visual C++

File Edit Yiew Insert Project Build Tools ‘Window Help

DT - - - O

i " |
:E- en... o FE

lose

=l

L

i

Open Workspace, ..
Sawve Workspace

Close Workspace

SPV AppWizard — Step 2

Files Projects | Work zpaces | Other Documents |

o ATL COM Appiwizard Project name:
3] Cluster Resource Type \Wizard |Test
254 Custom Appiwizard }
Databaze Project Lagtior:
% DevStudio Add-in Wizard |E:'\D ocuments and Settingsinatk J
[S4P Extension Wizard
5] Makefile
MFC Actives Controlafizard oy Create new work zpace
] MFC Appwizard (dl) .
@ MFC Appwizard [exe) [
SPY Apphefizard
1 Utility Praject | J
B win32 &pplication
j'w'in32 Congole Application
| %) Win32 Dynarnic-Link Library s
%) Win32 Static Library ‘W'”SE

] | Cancel

SPV AppWizard — Step 3

SPV AppWizard - Step 1 of 2]

HOL Language
f* Verilog
" WHDL

Simulator

¢ Active-HODL
" ModelSim

Project Type
™ Emphy {+ Sleleton
{# [iver - Callector ﬂ (" Example

¢ Back Mexst > Finizh Cancel Help

SPV AppWizard — Step 4

SPY AppWizard - Step 2 of 2 (%]

Simulator Interface Librany:

[Custom: |

v Chooze Existing:

C:\Program Files\Aldechdctive-HOL 7.7 %pliiE

v Set $5P%_SIM_LIB enviroment variable to the path above
v Set $5P%_SIM_LIB in project settings

Simulatar Executable File:

| Custam: J

v Choose Existing:

C:%\Program Files\Aldec\Active-HOL 7.1 4%binhavhdl exe

< Back Finizh

Cancel Help

SPV AppWizard — Step 5

SPV AppWizard - S5tep 3 of 3

DPF
v |hclude DPF

td atlab External Librans:

| Custam [extern dir]: |

v Choose Existing:

C:\Program Files\MaAT L&E 704 %\extern

W Set $SPY_MATLAB_LIE and INC envirament wariable ta the path abowe
W Set$SPV MATLAB LIB and INC in project settings

< Back, Finizh Cancel Help

10

Build

*« Test1 - Microsoft Yisual C++ - [Test1Driver.cpp]

[Fle Edit Wew Insert Project

S ==

-3

-3

@
-3

Workzpace Test1" 1 project(s]

-8 Testl files

Source Files

3 Test1Col.cpp

3 Tezt1Driver.cpp
3 Tezt1Main.cpp
3 Test1Packet.cpp
3 Test1Th.cpp
Header Files

E] TestiColh

=] Test1Driverh
% Test1Packet.h
=] Test1Thb.h
Resource Files
Esternal Dependencies

Build Tools Window Help

@ Compile TestiDriver.cpp Chrl4+F7
Build Test1.dll

Rebuild Al
Batch Build. ..

Clean

Skart Debug

Debugger Remote Connection, .,
! Execute RS

Set Active Configuration. ..

Configurations. ..

LibDir

c:Start

=tart_T.

. Threa

b clock
lockicl

ezetH ("

rezetl =

D .

p_Thread-:wait_To E
p Thread- >wa1t TD E

————riT o

B2 ClassView | | Z] FilsYiew

J

Compiling. . .
TestlHain.cpp
Te=st1Col .cpp

TestlDriver.cpp
Test1Packet . cpp

Te=t1lTh.cpp

Linking. ..

Configuration:

Testl — WiniZ Debug

Creating librarvy Debug-Testl. lib and object Debug-Testl.e=xp

Te=stl.dll - 0 error(s).

% Build

0 warning(=)

Debug

Findd in Files 1

Find in Files 2

Resultts

11

Debugger Setup — Step 1

*« Test1 - Microsoft Visual C++ - [Test1Driver

[File= Edit Wew Insert Project Build Tools wWinc

Wiorkzpace 'Testl" 1 project(s)
-
=4 Sour Build
E T Build {selection only)

AT

E T Clean (selection only)
E T 7 Mew Folder. ..

AT Add Files to Praject. ..
= 'EI Head Set as Ackive Project

Bl

a T Unload Project:

% T Settings. ..
ER

[Reso |v Docking Yiew
Hide

Properties

Debugger Setup — Step 2
(ActiveHDL)

Project Settings

Settings For: |'W'ir'|32 Debug j General Debug | C/C++ | Link. | Resourc: EE

Category:

Executable for debug session:
|I::"»F'r|:|gram Filezhdldechbctive-HDL 71481 avhdl exe j

Whorking directon:
| \HdlTest1

Frogram argurients:
|-|:||:| Run.do

Remote executable path and file name:

aFk. Cancel

13

Debugger Setup — Step 2
(ModelSim)

Project Settings

Settings For: |win32 Debug

Gereral Debug | CAC++ | Lirk, | Fiesourc EE

Category: | General ﬂ

Executable for debug session;

|E: Wodeltech_ewval B 1chwin32hwsimk. exe ﬂ

"Working directaory:
| \Hdl

Frogram arguments:;
|-|:|-:| Fun.da

Femaote executable path and file name:

] | Cancel

14

BYild KU Debug
*« Test1 - Microsoft Visual C++ - | Test1Driver.cpp]

[Eile Edit View Insert Project | Buld) Tools ‘Window Holp
=

=SB Testl files

Build Test1,dll
Wiorkspace ‘Test1" 1 project(z)

Rebuild Al
Batch Build...
=43 Source Files Clean
Eﬁ Tezt1Col.cpp
E Test1Driver.cpp St g
E Test1Main.cpp Debugger Remoke Co nection,
Eﬁ Test1Packet.cpp
' »eCcUue avndl.exe
3 Test Th.cpp -l E-cecube avhdl.exe
=i Header Files Set Active Configuration. ..
=] TestiColh .
% Test1Driver.h Corfyetite s
=] Test1Packeth
=] TestiThh

Run/Debug

Builel [Rumbebug

yimLibDir
7

=r: Start()

c=tart_Thread(l.

thi=,

(SPEY_THH)&Test1Driver: : Tl

=1 ThreadFunc({=pv_Thread Control*® p _Thread,
| Ch =locki"ScramblerTh . clock”)
p_locki{clock,

at_Posedge);

=EpPV_
rezetH({ "ScramnblerTh . reset_n") ;

15

Run/Debug 2

Microsoft Deyeloper Studio

‘C:AProgram Fileshaldechactve-HDOL 7 TABINYavhdl exe’

does not contan debugging mtarmation. Press OF. to
continUe.

16

Driving Signals

void Test1Driver::ThreadFunc()

{
SpvEvent pClock("Test1Tb.clock", AtPos);

SpvSig resetN("Test1 Tb.reset_n");
SpvSig dataln("Test1Tb.data_in");
SpvSig dataEn("Test1Tb.data_in_valid");
//TODO: Instantiate other signals here

/l Waiting 2 Clocks, Resetting for 2 clocks and continue
Wait(pClock);

resetN = 0;

Wait(pClock,2);

resetN = 1;

//TODO: Drive data here

17

Driving Signals - Waveform

@ Active-HDL 7.1 (Test1 ,Test1) - Waveform Editor, 1 ™

File Edit Search Miew ‘Workspace Design Simulation Waweform Tools Window Help

Fr-El zsE FyEOKREEM T O S e oM op 002l m =T

i I Q& Q@& W R Ie =

| @testith (testitbarc) | || Name Valus chi S0, . w0 . ts0 . 0 4 %

+{F test1th (test1tbarc) m glogk 1 sinininininininininininiln
@ std.standard 0 data_in 5

@ icce.std_logic_1164
—1oaI_ o data_in_valid 0

+ W data_out L){U

r data_out_walid n i k- |

rorezet_n 1

18

Exercise 1

See what happens when the signal name 1s incorrect

» Drive the data_in and data_in_enable signals

» Experiment with different values, including those larger than the
signal width.

» Change signal values over time
» Drive signals in a loop — one iteration per clock

» Add a “ready” signal to the design. Have the DUT raise
and lower the ready. Have the driver check the ready
signal before driving.

» Use the rise of the ready signal asynchronously. (Hint:
Create a new event)

19

Driving Signals — X and Z

Wait(pClock);

resetN = 0;
Wait(pClock,2);
resetN = 1;
dataIn(ZVal) = OxF;
dataEn =0;

Wait(pClock);

dataEn =1;
unsigned i;

for(i = 0;1< 100; i++)
{

dataln = i;
Wait(pClock);
}
dataEn =0;

dataIn(ZVal) = OxF;

20

Driving Signals — Slices

Wait(pClock);

dataEn =1;
unsigned i;
for(i=0;1< 100; i++)

{
dataln[0](ZVal) =1; //Drive z to bit O
dataln[1] = ldataln[1]; //Toggle bit 1
dataln(2,3)(XVal) =3; //Drive x to bits 2 through 3
dataln(3, dataln.Size() - 1)(XVal) =1i; //Drive x to bits 4 through highest with i
Wait(pClock);
}
dataEn =0;

dataln(ZVal) = OxF;

21

Using the Debugger

Breakpoints
Step Into

Step Over
Run to Cursor

Set execution position

22

Using the Debugger 2
Right-Cliel: i margim Step
Step Owver
waiainta_vass - u, Debug Sterp| Runto

R @@[m@ﬁ @ Int® | curser

Copy

o 1 EL) A o & PO
|__=l Lisk Members |
=
datalnix_Val) = 2:
%, parameter Info datalniz_Val) = &:
A% Complete Word Wait({pClock):
¥ G0 To Definition OF Wait [=2 Vaiti{pClock);
—— B Go To Reference To Wait ¥

i

~Aldec
atchiz
H32-Kl
M3z2~VI
M2 25 B properties synkt
M3 2~z il =SV
M3i2~gdiiz dll'. no matching =vnk

'ﬂT_"] Insert/Remove Breakpoink

23

Using the Debugger — SPV helper
functions

File should include SpvHFile.h

SimTime() will return the simulation time as a 64
bit unsigned integer

s1g.Uint64() will return the first 64 bits of a signal

sig.Str(SpvDec/SpvHex/SpvBin) returns a signal’s
numerical string representation (of any length)

XVal and ZVal with sig.Literal()

24

Using the Debugger - Screenshot

dataEn = 1:
dataln = 2.
datalniZvVal) = 1,

P Wailt(pClock])
s | B> Walt(pClock) .
Class¥iew |] FilsView | [« |
| Name ¥ale
13 SimTime() 1
dataEn. UTint () L

dataln. Literal()
dataln Str{SpvHex)
dataln. Uinti()

..

Ux0d=0b045 "001Z"
Ox0dbf9b50 "3"

.............................

.............................

25

Processes Creation

(Class must 1nherit from SpvBase)
Add process function to class header

Add process function to class body
Call StartTProc(this, (SPVPM)&MyClass::MyFunc);

Optionally, save the returned SpvTProcCitrl
pointer

REMEMBER: Thread processes are not
cyclical like HDL processes!

26

Exercise 2

» Create a new process just for driving reset.

»Move the current resetting code out of
ThreadProc and into the new process.

» While you are at it, use Wait() on time, instead
of Wait() on the clock, for the reset duration.

» Create a third process that waits on reset
and stops and restarts ThreadProc when that
happens. (hint: Use the Restart() function
of ThreadProc’s SpvTProcCtrl pointer)

27

SpvBitVec and Friends

SpvBitVec helps us deal with bit oriented data.
— Includes index and slice operations
— Interoperable with C unsigned data type
— Interoperable with SpvSig

SpvBitVecCollector accumulates chunks of data
into one bit vector.

SpvBitVeclterator separates a bit vector into data

chunks.

Both SpvBitVecCollector and SpvBitVeclterator are declared in
SpvBitVeclterator.h

28

SpvBitVec

Default initial size 1s 32 bits, but this (as well as an initial value) can be
set in the construction. Upper limit is define by system memory.

Most operations on SpvBitVec (and SpvSig) and unsigned are
transparent. Some require the Uint()/Uint64() function.

Assignments from signals/bit vectors of different size will not change
the vector size. Use the Copy() function to force a resize.

— This is not true in bit vector construction!

— Manual resize can be accomplished with the Resize() function.
Debug functions exist — similar to SpvSig.
Convenience functions exist for:

— Zeroing out all bits (Zero() function)

— Setting all bits to one (One() function)

29

SpvBitVec (cont)

— Randomized content (Gen() function)
— Bit vector concatenation (Pack() function)
— Parity (Parity() function — calculates odd parity)
— Counts the number of ones in the vector (Sum1() function)
— Bit vector comparison (FindUnmatchedBit() function)
— Str() and SliceStr functions return vector/slice contents in string
form. Also, ostream (e.g. cout) is supported.
e Most arithmetic and bitwise operators, including the shift
operators, work for bit vectors.

e Bit vectors should be used where the bit orientation and/or
unlimited length 1s an advantage. Otherwise, stay with the
native data types.

30

SpvBitVecCollector

Initialized (and cleared) with Init()

— Sets maximum bit vector size
— Sets default chunk size
— Optionally, the chunks can be saved in reverse order

SetNext() pushes chunks. Optionally, the chunk size can
be specitied for each call.

BitsCollected() returns the number of bits accumulated.

IsEmpty() returns true when BitsCollected() returns zero.

Either assignment to a bit vector or the Collected()
function return the current contents.

31

SpvBitVeclter

Initialized (and cleared) with Init()
— Sets 1nitial contents
— Sets default chunk size
— Optionally, the chunks can be ladled out in reverse order

Next() pops chunks. Optionally, the chunk size can be
specified for each call.

BitsRemaining() returns the number of bits left (not
popped). IsEmpty() returns true when BitsRemaining()
returns zero.

Assignment to a bit vector or the Lastlteration () function
return the last popped chunk.

32

STL Alternatives

If the bit orientation 1s not important, then there are better
alternatives to the bit vector collector/iterator types

deque — double ended queue, preferable when
pushing/popping at the front or back.

vector — contiguous array, preferable when accessing the
middle of the array.

Declaration example:
— deque< unsigned > d;
— vector< unsigned > v;

Both have push_back(), push_{front(), front(), back(),
pop_back(), size(), and index operations.

Deque also has a pop_front() function.

33

STL Alternatives - example

#include <deque>
using namespace std; /ISo we won’t have to use the full name, std::deque

deque< unsigned > d;

/Ipush 5 elements
d.push_back(1);
d.push_back(2);
d.push_back(4);
d.push_back(3);
d.push_back(7);

d[2] = 10; //Overwrite 4 with 10

unsigned front = d.front(); //front will be 1
d.pop_front();
front = d.front(); /[front will be 2

unsigned back = d.back(); //back will be 7
d.pop_back();
back = d.back(); //back will be 3

34

Exercise 3

» Use the SpvBitVec class to write functions for:
» Bit reversal

» Little endian to big endian conversion. (Arbitrary byte
size, but must be a factor of the total size)

» Functions should take a bit vector as a parameter
and return the new, converted, vector.

» Do two implementations:
» Using the STL deque.
» Using the SpvBitVecCollect/Iter classes.

35

Collection

e Collector 1s similar to Driver, but has
opposite purpose. Here we accumulate data

from the DUT.

 We could collect 1n the driver (and will
sometimes do this), but generally we want
to keep the functionality 1n separates
classes.

36

Exercise 4

» Add the code to the collector class to collect
packets at the output.

» First, modify the driver to drive binary (not x or z) data
when enable 1s high.

» Reset is not driven in the collector process, so we have
to handle reset in a similar fashion as in exercise 2.
(Separate processes)

» Use the SPV_OUT macro and the bit vector string
functions to output the packet to both the screen and log
file (spv.log).

E.g. cout<<“PrintMe”’<<endl;
-2 SPV_OUT(<<*“PrintMe”’<<endl);

37

Exercise 5

» Add another process to collect the packets at the DUT input.

» Use the std::deque class to collect the SpvTProcCtrl for each thread and
loop over them in the Reset Listener thread to restart the threads at reset,
instead of the current implementation.

» If the new thread looks quite similar to the last one, don’t worry, but start
thinking about code reuse...

» As the next step, now compare the packet collected by each process.
Identify the first wrong bit. Try inserting a bug into the DUT and see
if it gets caught.

» Now change the DUT to cause a very large delay. Have the driver
send multiple small, non-identical, packets. The check will probably
fail. What’s the problem with the check? How will you fix it?

38

Transfer Function

 DUT may manipulate the input (output !=
input)

e Prior to comparison we must model the
transfer function of the DUT

e The collected input will be passed through a
function that computes the expected output.
This will be the basis for comparison.

39

Exercise 6

» Change the DUT to perform some operation
on the data before output. (e.g. bitwise
negation, or a mapping function)

» In the C++, write a Transfer() function and
call it before the comparison, using the
result of Transter() instead of the original
input.

40

Generation

e Definition — Stimulus fabrication

e Pseudorandom — deterministic with the same seed
— Range
— Generate from list of values
— Weighted
— Coverage based, random choice

 Non-Random
— Constant
— Sequence List
— Coverage based, sequential

41

Generation — SPV classes, partial list

 GenUnsigned() — range generation function
(Defined 1in SpvGlobal.h)

pvGenConst()

pvGenInRange()
pvGenInRangeList()
pvGenNotInRangeList()
pvGenlnRangelListOrder()
pvGenNextStep()

{

42

Generation - Use

Instantiate class and initialize

e First parameter is generally the bit size of the result.

(Retrieve with Size())

e List generators can be initialized with either a string, or

a vector of values.

Call Gen() function — returns unsigned.
Some generators can be Reset()

Use SetName() to attach an

to a generator

instance. Use Name() to retrieve it. (Useful for
debugging, amongst other things...)

43

Generation - Example

SpvGenInRangeList dataGen(dataln.Size(), "0, 3 7, 9");//0, 3 through 7, 9
SpvGenInRange lengthGen(32, 1, 100);
SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)
{
Wait(pClock);
dataEn =1;
unsigned len = lengthGen.Gen();
unsigned j;

for(j = 0; j < len; j++)
{
Wait(pClock);
dataln = dataGen.Gen();
}
dataEn =0;
Wait(pClock, idleGen.Gen());

Generation — Vector Init

vector<SpvRange> v;
v.push_back((0, 0));
v.push_back((3, 7));
v.push_back((9, 9));

SpvGenInRangeList dataGen(dataln.Size(), v);
SpvGenInRange lengthGen(32, 1, 100);
SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)
{
Wait(pClock);
dataEn =1;
unsigned len = lengthGen.Gen();
unsigned j;
for(j = 0; j <len; j++)
{
Wait(pClock);
dataln = dataGen.Gen();
)
dataEn =0;
Wait(pClock, idleGen.Gen());
)

Exercise 7

» Add randomized generation to the driver
» Experiment with the different classes

» Create a range generator for the length. Have
its min and max be set based on another
generator.

46

Weighted Generation

SpvGenConst dataGenl(dataln.Size(), 0);
SpvGenInRange dataGen2(dataln.Size(), 1, 3);

SpvGenWeighted dataGen(dataln.Size());

dataGen.AddGenElem(dataGenl, 90); /190 weight
dataGen.AddGenElem(dataGen2, 10); /110 weight
SpvGenInRange lengthGen(32, 1, 100);

SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)
{
Wait(pClock);
dataEn =1;
unsigned len = lengthGen.Gen();
unsigned j;
for(j = 0; j <len; j++)
{
Wait(pClock);

dataln = dataGen.Gen();
}
dataEn =0;
Wait(pClock, idleGen.Gen());

47

Exercise 8

» Add weighted generation of the packet length to
the driver.
» 25% generate from 1 to 3
» 25% generate from 20 to 22 or 40 to 42
» 25% generate one of 50, 60, 70
» 25% generate (in order) 80, 81, 82

» Experiment with the weights. What happens if the
sum of the weights 1s greater than 1007

48

Generation By File

Text file defines named generators
Generators can be retrieved at runtime by name

Allows end-user test configuration without
compilation

INCLUDE directive allows preexisting definitions
to be added to a definition file.

Redefinition of generator 1s possible (last
definition 1s conclusive)

Redefinition together with INCLUDE allows for
defaults to be defined and overridden per test.

49

File Syntax

// - comment to end of line

START:

STOP:

DEFINE: {name} [val]

INCLUDE: “{FileName}”

EXT_ENUM_LIST: {name} “{enl, en2, ...}” //enumeration en1=0, en2=1, ...
NUMBER: {name} {value}

GC: {name} {bitsize} {val} /[const

GR: {name} {bitsize} {min} {max} /[range

GS: {name} {bitsize} {stepsize} {from} {to} //step

GRANGE: {name} {bitsize} {“rangelist”} {truelfase} //range list (incl.lexc.)
GRANGEQO: {name} {bitsize} {“rangelist”} //sequential range list
GPERCENT: {name} {bitsize} {*“genlist”’} {percentlist} /weighted

50

File Syntax - Examples

START:

//INOTE: WHEN ENTRY IS DUPLICATED, LAST DEFINITION IS
//[CONCLUSIVE. HERE ALL GENERATORS ARE NAMED
//DataGen, BUT ONLY THE LAST ONE IS EFFECTIVE

/IConst (here, always 3)
GC: DataGen 32 3

//Range (here, O to 3)
GR: DataGen 3203

//Step up/down (by last param). Step size is second param.
//Starting value is penultimate param. (here, 0, 3, 6,9, 12, 15, 2, 5, etc)
GS: DataGen 323 0 15 O true

//Range list/not in list (by last param) (here, O to 4, and 15)
GRANGE: DataGen 32 "0-4,15" true

//Range list order up/down (by last param)
GRANGEO: DataGen 32 "0-4,15" true

//Weighted generation

GC: DataGenl 32 3

GC: DataGen2 32 7

GPERCENT: DataGen 32 "DataGenl,DataGen2" "10,90"

STOP:

51

Generation By File — Code

//File contents:

//IGR: DataGen 32 0 3

//GC: IdleGen 32 2

//IGRANGEO: LenGen 32 "0-4,15" true

Wait(pClock);

SpvGen* dataGen = NULL,;
SpvGen* idleGen = NULL;
SpvGen* lenGen = NULL;
SD::GetGen(dataGen, "DataGen");
SD::GetGen(idleGen, "IdleGen");
SD::GetGen(lenGen, "LenGen");

while(1)
{
unsigned len = lenGen->Gen();
dataEn = 1;
unsigned i;
for(i=0; i < len; i++)
{
dataln = dataGen->Gen();
Wait(pClock);

}
dataEn = 0;

Wait(pClock, idleGen->Gen());

/IGenerate packet length. Note use of -> because of pointer type

//Generate data nibble

/ITime between packets

52

Exercise 9 — Generation By File

e Change your code to use file based
generators

— Define the file generators to the same
definitions as currently coded.

— Change the definitions, keeping the same
generator names, and rerun the simulation.

53

Dirty Words — A touch of OOD
concepts

Base Class — Class that provides some basic definitions and optionally,
basic functionality.

Child Class — Class that inherits from some base class. Generally, it
has at least the same definitions as its base, but can extend or replace
the implementations (“hook function”), as well as add unrelated
functionality.

Overrideable functions are defined with the virfual keyword.

In SPV, all generators are child classes of SpvGen. SpvGen defines
the Gen() function, but not its implementation. Each generator class
implements the Gen() function differently.

Through an SpvGen pointer we can call Gen() on the generator
returned by SD::GetGen() without knowing or caring which class it
actually 1is.

54

Coverage

e Shows what situations we have reached in
our simulations.

e Let’s us determine the efficiency of the
generation. Can also be considered a self
check on the verification coding and test
configuration.

e Helps show how much of the test plan has
been accomplished.

55

Coverage (cont)

Coverage 1s composed as:

— Sampling trigger

— Values to record
Most commonly, the sampling trigger will be a signal edge
and the recorded values will come from signals as well.
Sometimes, things are more complex

— History — coverage includes non-current signal values

— C++ values — recorded values don’t exist in the simulator
— Sample trigger is a complex combination and/or chain of events

56

SpvCover

SpvCover 1s the main coverage class in SPV
— Add signals to record with calls to AddItem()
— Determine the sampling trigger with Start()
— Suspend sensitivity to trigger with Stop()
— Resume sensitivity with Restart()

Extension for more complex cases 1s possible with
derivation and overrides.

For the case of a complex trigger event, it 1s often easier to
define a derivative signal in the HDL realm than to derive
& override.

Start() has option to load coverage from previous run

57

Coverage Example

m_Cov->AddItem(“Test1Tb.data_in");

/lenable_and_clock is an HDL signal that I have added. It is defined as (clock & data_en)
m_Cov->Start("DataCov", SpvEvent(“Test1Tb.enable_and_clock", AtPos));

58

Cross Coverage

e Cross coverage 1s the vector (cross) product
of multiple coverage values.

e Simple coverage can be thought of as a
degenerate 1nstance of cross coverage.

e Cross coverage in SPV 1s simply additional
calls to AddItem() before calling Start()

59

Exercise 10

» Add a mode signal
» Add to DUT input

» Add mode to d

» Cover the mod

e input with SpvCov. The

trigger event s|

hould be the mode signal 1itself.

river — drive 1t once each packet

60

Coverage Display — Open File

= spv_Coverage Analysis

File

Hame

:| = |Info of field

= Choose an spv coverage working directory

Look In: | Src

oo
oo

-l o—
-| O—

spu_twer_Wurk|

File Hame: SISimPlusttempTestiHA Test1 WS rolspy_Cover Warl;

Files of Type:

All Files

-

Open

Cancel

61

Coverage Display 2

spv_Coverage Analysis
File

Namne ‘| = [info of fietd
DataCov Coverage% Efficiency’ Seed Total Combinations
6.25 34.0425453 1 256

: 22

: 2 Fields

00
A0.8
10
18
=
§§ (2.2), hit count s -3
a8
40
48
50
58
o
B8
70
|7
80
a8
HET
88
Jron
10,8
11,0
s
12,0
12,8
3o
13,8
14,0
148
18,0
158

Test No.

62

