
1

Agenda

• Settle in

• SPV overview

• Setting up a project

• First steps – driving signals

• Using the debugger

• More driving (and collecting) signals

• SpvBitVec and friends

2

Agenda (cont)

• Generation

• Coverage

• Project Exercise

• Optional

• Summary

3

What is SPV Test Bench Studio?

• Verification library

– Simulation interaction (connectivity)

• Write/Read signals

• React to simulation events (processes)

– Generation

– Coverage

– Basic helper classes (bit vector and friends)

– Companion libraries

• Simulator Add-on (PLI, FLI, VHPI, etc.)

• Stand-alone SPVSim (Modeling)

4

What is SPV? (cont)

• Cross platform

– Widows

– Linux

– Others

• Compilers

– VS 6 (Windows) (now adding support for later VS)

– GCC 2.96 (Linux/Unix)

– GCC 3.2 and higher

• Linux/Unix

• Windows (MinGW)

5

Setting Up

Requirements:

�Simulator (e.g. Active HDL)

�Visual Studio 6 with SP 6

�SPV Test Bench Studio

6

SPV AppWizard – Step 1

7

SPV AppWizard – Step 2

8

SPV AppWizard – Step 3

9

SPV AppWizard – Step 4

10

SPV AppWizard – Step 5

11

Build

12

Debugger Setup – Step 1

13

Debugger Setup – Step 2

(ActiveHDL)

14

Debugger Setup – Step 2

(ModelSim)

15

Run/Debug

16

Run/Debug 2

17

Driving Signals

void Test1Driver::ThreadFunc()

{

SpvEvent pClock("Test1Tb.clock", AtPos);

SpvSig resetN("Test1Tb.reset_n");

SpvSig dataIn("Test1Tb.data_in");

SpvSig dataEn("Test1Tb.data_in_valid");

//TODO: Instantiate other signals here

// Waiting 2 Clocks, Resetting for 2 clocks and continue

Wait(pClock);

resetN = 0;

Wait(pClock,2);

resetN = 1;

//TODO: Drive data here

}

18

Driving Signals - Waveform

19

Exercise 1

See what happens when the signal name is incorrect

� Drive the data_in and data_in_enable signals

� Experiment with different values, including those larger than the
signal width.

� Change signal values over time

� Drive signals in a loop – one iteration per clock

� Add a “ready” signal to the design. Have the DUT raise
and lower the ready. Have the driver check the ready
signal before driving.

� Use the rise of the ready signal asynchronously. (Hint:
Create a new event)

20

Driving Signals – X and Z

Wait(pClock);

resetN = 0;

Wait(pClock,2);

resetN = 1;

dataIn(ZVal) = 0xF;

dataEn = 0;

Wait(pClock);

dataEn = 1;

unsigned i;

for(i = 0; i < 100; i++)

{

dataIn = i;

Wait(pClock);

}

dataEn = 0;

dataIn(ZVal) = 0xF;

21

Driving Signals – Slices

Wait(pClock);

dataEn = 1;

unsigned i;

for(i = 0; i < 100; i++)

{

dataIn[0](ZVal) = 1; //Drive z to bit 0

dataIn[1] = !dataIn[1]; //Toggle bit 1

dataIn(2,3)(XVal) = 3; //Drive x to bits 2 through 3

dataIn(3, dataIn.Size() - 1)(XVal) = i; //Drive x to bits 4 through highest with i

Wait(pClock);

}

dataEn = 0;

dataIn(ZVal) = 0xF;

22

Using the Debugger

• Breakpoints

• Step Into

• Step Over

• Run to Cursor

• Set execution position

23

Using the Debugger 2

24

Using the Debugger – SPV helper

functions

• File should include SpvHFile.h

• SimTime() will return the simulation time as a 64

bit unsigned integer

• sig.Uint64() will return the first 64 bits of a signal

• sig.Str(SpvDec/SpvHex/SpvBin) returns a signal’s

numerical string representation (of any length)

• XVal and ZVal with sig.Literal()

25

Using the Debugger - Screenshot

26

Processes Creation

• (Class must inherit from SpvBase)

• Add process function to class header

• Add process function to class body

• Call StartTProc(this, (SPVPM)&MyClass::MyFunc);

• Optionally, save the returned SpvTProcCtrl
pointer

• REMEMBER: Thread processes are not
cyclical like HDL processes!

27

Exercise 2

�Create a new process just for driving reset.

�Move the current resetting code out of
ThreadProc and into the new process.

�While you are at it, use Wait() on time, instead
of Wait() on the clock, for the reset duration.

�Create a third process that waits on reset
and stops and restarts ThreadProc when that
happens. (hint: Use the Restart() function
of ThreadProc’s SpvTProcCtrl pointer)

28

SpvBitVec and Friends

• SpvBitVec helps us deal with bit oriented data.

– Includes index and slice operations

– Interoperable with C unsigned data type

– Interoperable with SpvSig

• SpvBitVecCollector accumulates chunks of data
into one bit vector.

• SpvBitVecIterator separates a bit vector into data
chunks.

• Both SpvBitVecCollector and SpvBitVecIterator are declared in
SpvBitVecIterator.h

29

SpvBitVec

• Default initial size is 32 bits, but this (as well as an initial value) can be
set in the construction. Upper limit is define by system memory.

• Most operations on SpvBitVec (and SpvSig) and unsigned are
transparent. Some require the Uint()/Uint64() function.

• Assignments from signals/bit vectors of different size will not change
the vector size. Use the Copy() function to force a resize.
– This is not true in bit vector construction!

– Manual resize can be accomplished with the Resize() function.

• Debug functions exist – similar to SpvSig.
• Convenience functions exist for:

– Zeroing out all bits (Zero() function)

– Setting all bits to one (One() function)

30

SpvBitVec (cont)

– Randomized content (Gen() function)

– Bit vector concatenation (Pack() function)

– Parity (Parity() function – calculates odd parity)

– Counts the number of ones in the vector (Sum1() function)

– Bit vector comparison (FindUnmatchedBit() function)

– Str() and SliceStr functions return vector/slice contents in string
form. Also, ostream (e.g. cout) is supported.

• Most arithmetic and bitwise operators, including the shift
operators, work for bit vectors.

• Bit vectors should be used where the bit orientation and/or
unlimited length is an advantage. Otherwise, stay with the
native data types.

31

SpvBitVecCollector

• Initialized (and cleared) with Init()

– Sets maximum bit vector size

– Sets default chunk size

– Optionally, the chunks can be saved in reverse order

• SetNext() pushes chunks. Optionally, the chunk size can
be specified for each call.

• BitsCollected() returns the number of bits accumulated.
IsEmpty() returns true when BitsCollected() returns zero.

• Either assignment to a bit vector or the Collected()
function return the current contents.

32

SpvBitVecIter

• Initialized (and cleared) with Init()

– Sets initial contents

– Sets default chunk size

– Optionally, the chunks can be ladled out in reverse order

• Next() pops chunks. Optionally, the chunk size can be
specified for each call.

• BitsRemaining() returns the number of bits left (not
popped). IsEmpty() returns true when BitsRemaining()
returns zero.

• Assignment to a bit vector or the LastIteration () function
return the last popped chunk.

33

STL Alternatives

• If the bit orientation is not important, then there are better
alternatives to the bit vector collector/iterator types

• deque – double ended queue, preferable when
pushing/popping at the front or back.

• vector – contiguous array, preferable when accessing the
middle of the array.

• Declaration example:
– deque< unsigned > d;

– vector< unsigned > v;

• Both have push_back(), push_front(), front(), back(),
pop_back(), size(), and index operations.

• Deque also has a pop_front() function.

34

STL Alternatives - example

#include <deque>

using namespace std; //So we won’t have to use the full name, std::deque

….

deque< unsigned > d;

//push 5 elements

d.push_back(1);

d.push_back(2);

d.push_back(4);

d.push_back(3);

d.push_back(7);

d[2] = 10; //Overwrite 4 with 10

unsigned front = d.front(); //front will be 1

d.pop_front();

front = d.front(); //front will be 2

unsigned back = d.back(); //back will be 7

d.pop_back();

back = d.back(); //back will be 3

35

Exercise 3

�Use the SpvBitVec class to write functions for:

�Bit reversal

�Little endian to big endian conversion. (Arbitrary byte

size, but must be a factor of the total size)

� Functions should take a bit vector as a parameter

and return the new, converted, vector.

�Do two implementations:

�Using the STL deque.

�Using the SpvBitVecCollect/Iter classes.

36

Collection

• Collector is similar to Driver, but has

opposite purpose. Here we accumulate data

from the DUT.

• We could collect in the driver (and will

sometimes do this), but generally we want

to keep the functionality in separates

classes.

37

Exercise 4

�Add the code to the collector class to collect
packets at the output.
�First, modify the driver to drive binary (not x or z) data

when enable is high.

�Reset is not driven in the collector process, so we have
to handle reset in a similar fashion as in exercise 2.
(Separate processes)

�Use the SPV_OUT macro and the bit vector string
functions to output the packet to both the screen and log
file (spv.log).
E.g. cout<<“PrintMe”<<endl;
�SPV_OUT(<<“PrintMe”<<endl);

38

Exercise 5

� Add another process to collect the packets at the DUT input.
� Use the std::deque class to collect the SpvTProcCtrl for each thread and

loop over them in the Reset Listener thread to restart the threads at reset,
instead of the current implementation.

� If the new thread looks quite similar to the last one, don’t worry, but start
thinking about code reuse…

� As the next step, now compare the packet collected by each process.
Identify the first wrong bit. Try inserting a bug into the DUT and see
if it gets caught.

� Now change the DUT to cause a very large delay. Have the driver
send multiple small, non-identical, packets. The check will probably
fail. What’s the problem with the check? How will you fix it?

39

Transfer Function

• DUT may manipulate the input (output !=

input)

• Prior to comparison we must model the

transfer function of the DUT

• The collected input will be passed through a

function that computes the expected output.

This will be the basis for comparison.

40

Exercise 6

�Change the DUT to perform some operation

on the data before output. (e.g. bitwise

negation, or a mapping function)

�In the C++, write a Transfer() function and

call it before the comparison, using the

result of Transfer() instead of the original

input.

41

Generation

• Definition – Stimulus fabrication

• Pseudorandom – deterministic with the same seed
– Range

– Generate from list of values

– Weighted

– Coverage based, random choice

• Non-Random
– Constant

– Sequence List

– Coverage based, sequential

42

Generation – SPV classes, partial list

• GenUnsigned() – range generation function

(Defined in SpvGlobal.h)

• SpvGenConst()

• SpvGenInRange()

• SpvGenInRangeList()

• SpvGenNotInRangeList()

• SpvGenInRangeListOrder()

• SpvGenNextStep()

43

Generation - Use

• Instantiate class and initialize

• First parameter is generally the bit size of the result.
(Retrieve with Size())

• List generators can be initialized with either a string, or
a vector of values.

• Call Gen() function – returns unsigned.

• Some generators can be Reset()

• Use SetName() to attach an ID to a generator
instance. Use Name() to retrieve it. (Useful for
debugging, amongst other things...)

44

Generation - Example

SpvGenInRangeList dataGen(dataIn.Size(), "0, 3 7, 9");//0, 3 through 7, 9

SpvGenInRange lengthGen(32, 1, 100);

SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)

{

Wait(pClock);

dataEn = 1;

unsigned len = lengthGen.Gen();

unsigned j;

for(j = 0; j < len; j++)

{

Wait(pClock);

dataIn = dataGen.Gen();

}

dataEn = 0;

Wait(pClock, idleGen.Gen());

}

45

Generation – Vector Init

vector<SpvRange> v;

v.push_back((0, 0));

v.push_back((3, 7));

v.push_back((9, 9));

SpvGenInRangeList dataGen(dataIn.Size(), v);

SpvGenInRange lengthGen(32, 1, 100);

SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)

{

Wait(pClock);

dataEn = 1;

unsigned len = lengthGen.Gen();

unsigned j;

for(j = 0; j < len; j++)

{

Wait(pClock);

dataIn = dataGen.Gen();

}

dataEn = 0;

Wait(pClock, idleGen.Gen());

}

46

Exercise 7

�Add randomized generation to the driver

�Experiment with the different classes

�Create a range generator for the length. Have

its min and max be set based on another

generator.

47

Weighted Generation

SpvGenConst dataGen1(dataIn.Size(), 0);

SpvGenInRange dataGen2(dataIn.Size(), 1, 3);

SpvGenWeighted dataGen(dataIn.Size());

dataGen.AddGenElem(dataGen1, 90); //90 weight

dataGen.AddGenElem(dataGen2, 10); //10 weight

SpvGenInRange lengthGen(32, 1, 100);

SpvGenInRangeListOrder idleGen(32, "5, 10, 3");

while(1)

{

Wait(pClock);

dataEn = 1;

unsigned len = lengthGen.Gen();

unsigned j;

for(j = 0; j < len; j++)

{

Wait(pClock);

dataIn = dataGen.Gen();

}

dataEn = 0;

Wait(pClock, idleGen.Gen());

}

48

Exercise 8

�Add weighted generation of the packet length to

the driver.

�25% generate from 1 to 3

�25% generate from 20 to 22 or 40 to 42

�25% generate one of 50, 60, 70

�25% generate (in order) 80, 81, 82

�Experiment with the weights. What happens if the

sum of the weights is greater than 100?

49

Generation By File

• Text file defines named generators

• Generators can be retrieved at runtime by name

• Allows end-user test configuration without
compilation

• INCLUDE directive allows preexisting definitions
to be added to a definition file.

• Redefinition of generator is possible (last
definition is conclusive)

• Redefinition together with INCLUDE allows for
defaults to be defined and overridden per test.

50

File Syntax

• // - comment to end of line

• START:

• STOP:

• DEFINE: {name} [val]

• INCLUDE: “{FileName}”

• EXT_ENUM_LIST: {name} “{en1, en2, …}” //enumeration en1=0, en2=1, ...

• NUMBER: {name} {value}

• GC: {name} {bitsize} {val} //const

• GR: {name} {bitsize} {min} {max} //range

• GS: {name} {bitsize} {stepsize} {from} {to} //step

• GRANGE: {name} {bitsize} {“rangelist”} {true|fase} //range list (incl.|exc.)

• GRANGEO: {name} {bitsize} {“rangelist”} //sequential range list

• GPERCENT: {name} {bitsize} {“genlist”} {percentlist} //weighted

51

File Syntax - Examples
START:

//NOTE: WHEN ENTRY IS DUPLICATED, LAST DEFINITION IS

//CONCLUSIVE. HERE ALL GENERATORS ARE NAMED

//DataGen, BUT ONLY THE LAST ONE IS EFFECTIVE

//Const (here, always 3)

GC: DataGen 32 3

//Range (here, 0 to 3)

GR: DataGen 32 0 3

//Step up/down (by last param). Step size is second param.

//Starting value is penultimate param. (here, 0, 3, 6, 9, 12, 15, 2, 5, etc)

GS: DataGen 32 3 0 15 0 true

//Range list/not in list (by last param) (here, 0 to 4, and 15)

GRANGE: DataGen 32 "0-4,15" true

//Range list order up/down (by last param)

GRANGEO: DataGen 32 "0-4,15" true

//Weighted generation

GC: DataGen1 32 3

GC: DataGen2 32 7

GPERCENT: DataGen 32 "DataGen1,DataGen2" "10,90"

STOP:

52

Generation By File – Code
//File contents:

//GR: DataGen 32 0 3

//GC: IdleGen 32 2

//GRANGEO: LenGen 32 "0-4,15" true

Wait(pClock);

SpvGen* dataGen = NULL;

SpvGen* idleGen = NULL;

SpvGen* lenGen = NULL;

SD::GetGen(dataGen, "DataGen");

SD::GetGen(idleGen, "IdleGen");

SD::GetGen(lenGen, "LenGen");

while(1)

{

unsigned len = lenGen->Gen(); //Generate packet length. Note use of -> because of pointer type

dataEn = 1;

unsigned i;

for(i = 0; i < len; i++)

{

dataIn = dataGen->Gen(); //Generate data nibble

Wait(pClock);

}

dataEn = 0;

Wait(pClock, idleGen->Gen()); //Time between packets

}

53

Exercise 9 – Generation By File

• Change your code to use file based

generators

– Define the file generators to the same

definitions as currently coded.

– Change the definitions, keeping the same

generator names, and rerun the simulation.

54

Dirty Words – A touch of OOD

concepts
• Base Class – Class that provides some basic definitions and optionally,

basic functionality.

• Child Class – Class that inherits from some base class. Generally, it
has at least the same definitions as its base, but can extend or replace
the implementations (“hook function”), as well as add unrelated
functionality.

• Overrideable functions are defined with the virtual keyword.

• In SPV, all generators are child classes of SpvGen. SpvGen defines
the Gen() function, but not its implementation. Each generator class
implements the Gen() function differently.

• Through an SpvGen pointer we can call Gen() on the generator
returned by SD::GetGen() without knowing or caring which class it
actually is.

55

Coverage

• Shows what situations we have reached in
our simulations.

• Let’s us determine the efficiency of the
generation. Can also be considered a self
check on the verification coding and test
configuration.

• Helps show how much of the test plan has
been accomplished.

56

Coverage (cont)

• Coverage is composed as:

– Sampling trigger

– Values to record

• Most commonly, the sampling trigger will be a signal edge
and the recorded values will come from signals as well.

• Sometimes, things are more complex

– History – coverage includes non-current signal values

– C++ values – recorded values don’t exist in the simulator

– Sample trigger is a complex combination and/or chain of events

57

SpvCover

• SpvCover is the main coverage class in SPV

– Add signals to record with calls to AddItem()

– Determine the sampling trigger with Start()

– Suspend sensitivity to trigger with Stop()

– Resume sensitivity with Restart()

• Extension for more complex cases is possible with
derivation and overrides.

• For the case of a complex trigger event, it is often easier to
define a derivative signal in the HDL realm than to derive
& override.

• Start() has option to load coverage from previous run

58

Coverage Example

void Test1Tb::Init()

{

m_Driver->Start();

m_Col->Start();

m_Cov->AddItem(“Test1Tb.data_in");

//enable_and_clock is an HDL signal that I have added. It is defined as (clock & data_en)

m_Cov->Start("DataCov", SpvEvent(“Test1Tb.enable_and_clock", AtPos));

}

59

Cross Coverage

• Cross coverage is the vector (cross) product

of multiple coverage values.

• Simple coverage can be thought of as a

degenerate instance of cross coverage.

• Cross coverage in SPV is simply additional

calls to AddItem() before calling Start()

60

Exercise 10

�Add a mode signal

�Add to DUT input

�Add mode to driver – drive it once each packet

�Cover the mode input with SpvCov. The

trigger event should be the mode signal itself.

61

Coverage Display – Open File

62

Coverage Display 2

